The famous websites provide tons of useful information: - <a href="http://r-pbd.org/" target="_blank">Programming with Big Data in R</a> - Training of <a href="http://rdav.nics.tennessee.edu/" target="_blank">Remote Data Analysis and Visualization Center</a> - CRAN Task View: <a href="http://cran.r-project.org/web/views/HighPerformanceComputing.html" target="_blank">High-Performance and Parallel Computing with R</a> - Section <a href="http://www.math.ncu.edu.tw/~chenwc/R_note/index.php?item=Rmpi">LAM/MPI/Rmpi</a>" of <a href="http://www.math.ncu.edu.tw/~chenwc/R_note">R_note</a> website - <a href="http://math.acadiau.ca/ACMMaC/Rmpi/" target="_blank">Rmpi Tutorial</a> by <a href="http://math.acadiau.ca/ACMMaC/" target="_blank">Acadia Centre for Mathematical Modelling and Computation</a> - <a href="http://www.stats.uwo.ca/faculty/yu/Rmpi/" target="_blank">Rmpi for R</a> by <a href="http://www.stats.uwo.ca/faculty/yu/" target="_blank">Dr. Hao Yu</a> The famous book provides other parallel techniques in R: - Q.E. McCallum and S. Weston (2011), <i><a href="http://shop.oreilly.com/product/0636920021421.do" target="_blank">Parallel R</a> Data Analysis in the Distributed World</i>, O'Reilly Media. The famous mailing list provides a discussion group about high-performance computing in <code>R</code>: - <a href="https://stat.ethz.ch/mailman/listinfo/r-sig-hpc" target="_blank">R-sig-hpc</a> mailing list. --- <div w3-include-html="./preamble_tail_date.html"></div>