phyclust.logL {phyclust} | R Documentation |
This computes a log-likelihood value of phyclust
.
phyclust.logL(X, ret.phyclust = NULL, K = NULL, Eta = NULL, Mu = NULL, pi = NULL, kappa = NULL, Tt = NULL, substitution.model = NULL, identifier = NULL, code.type = NULL, label = NULL)
X |
nid/sid matrix with N rows/sequences and L columns/sites. |
ret.phyclust |
an object with the class |
K |
number of clusters. |
Eta |
proportion of subpopulations, eta_k, length = |
Mu |
centers of subpopulations, dim = K*L, each row is a center. |
pi |
equilibrium probabilities, each row sums to 1. |
kappa |
transition and transversion bias. |
Tt |
total evolution time, t. |
substitution.model |
substitution model. |
identifier |
identifier. |
code.type |
code type. |
label |
label of sequences for semi-supervised clustering. |
X
should be a numerical matrix containing sequence data that
can be transfered by code2nid
or code2sid
.
Either input ret.phyclust
or all other arguments for this function.
ret.phyclust
can be obtain either from an EM iteration of
phyclust
or from a M step of phyclust.m.step
.
If label
is inputted, the label information will be used to
calculate log likelihood (complete-data), even the ret.phyclust
is the result of unsupervised clustering.
This function returns a log-likelihood value of phyclust
.
Wei-Chen Chen wccsnow@gmail.com
Phylogenetic Clustering Website: http://snoweye.github.io/phyclust/
## Not run: library(phyclust, quiet = TRUE) EMC.1 <- .EMC EMC.1$EM.iter <- 1 # the same as EMC.1 <- .EMControl(EM.iter = 1) X <- seq.data.toy$org ret.1 <- phyclust(X, 2, EMC = EMC.1) phyclust.logL(X, ret.phyclust = ret.1) # For semi-supervised clustering. semi.label <- rep(0, nrow(X)) semi.label[1:3] <- 1 phyclust.logL(X, ret.phyclust = ret.1, label = semi.label) ## End(Not run)